Physics 11 and 12 Equations and Formulae

Kinematics (1D and 2D)

Vector and Scalar quantities	$d = v_i \cdot t + \frac{1}{2} a \cdot t^2$
Uniform motion	$v_f = v_i + a \cdot t$
Accelerated motion	$V_f^2 = V_i^2 + 2 \cdot a \cdot d$
Projectile motion	, V _i + V _f
Relationships between variables	$d = \frac{2}{2} \cdot t$

Dynamics (1D and 2D)

Forces

Gravitational	F
Spring (Hooke's Law)	F
Normal	F
Tension	F

$$F = \frac{G \cdot m_1 \cdot m_2}{r^2}$$

$$F = k \cdot x$$

$$F_N = m \cdot g$$

$$F = m \cdot a$$

$$F = \mu \cdot F_N$$

Newton's Laws of Motion

Friction

Momentum (1D)

Mo	mentu	m
-		

Law of conservation of momentum

Impulse

Energy, Work, and Power

Potential and kinetic energy

Thermal energy

Law of conservation of energy

Work, power, and efficiency

$$P = m \cdot v$$
$$F \cdot t = m \cdot \Delta v$$

 $\mathsf{PE}_{\mathsf{grav}} = \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}$ $\mathsf{PE}_{\mathsf{spring}} = 0.5 \cdot \mathbf{k} \cdot \mathbf{x}^2$ $W = F \cdot d$ P = <u>W</u> Т

Electric Circuits

Ohm's Law

Kirkoff's Laws

Power and Efficiency

 $\mathbf{q}_1 \cdot \mathbf{q}_2$

r²

 $F = K_E \cdot$

 $E = \frac{F}{2}$

q

 $\frac{K \cdot q}{d^2}$

m

E =

Electrostatics

Electric charge

Electric force

Electric field

Electric potential energy

Applications of electrostatics

Electromagnetic Forces and Induction

Faraday's Law

Lenz's Law

Circular Motion and Gravitation

Uniform Circular Motion	$v = \underline{2 \cdot \pi \cdot r}$
Kinematics	t
Dynamics	$a = \frac{v^2}{r}$
Universal Gravitation Law	
Gravitational field strength	$F_{net} = m \cdot \frac{v^2}{r}$
	$F = \frac{G \cdot m_1 \cdot m_2}{r^2}$
	G = <u>F</u>