Physics 11 and 12 Equations and Formulae

Kinematics (1D and 2D)

Vector and Scalar quantities
Uniform motion
Accelerated motion
Projectile motion
Relationships between variables

$$
\begin{gathered}
d=v_{i} \cdot t+1 / 2 a \cdot t^{2} \\
v_{f}=v_{i}+a \cdot t \\
v_{f}^{2}=V_{i}^{2}+2 \cdot a \cdot d \\
d=\frac{v_{i}+v_{f}}{2} \cdot t
\end{gathered}
$$

Newton's Laws of Motion

Momentum (1D)

Momentum
Law of conservation of momentum Impulse

Energy, Work, and Power

Potential and kinetic energy
Thermal energy
Law of conservation of energy
Work, power, and efficiency

$$
\begin{aligned}
& \mathrm{PE}_{\text {grav }}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~h} \\
& \mathrm{PE}_{\text {spring }}=0.5 \cdot \mathrm{k} \cdot \mathrm{x}^{2} \\
& \mathrm{~W}=\mathrm{F} \cdot \mathrm{~d} \\
& \mathrm{P}=\frac{\mathrm{W}}{\mathrm{~T}}
\end{aligned}
$$

Electric Circuits

Ohm's Law
Kirkoff's Laws
Power and Efficiency
$P=\Delta v \cdot I$
$P=I^{2} \cdot R$
$P=\frac{\Delta v^{2}}{R}$

Electrostatics

Electric charge
Electric force
Electric field
Electric potential energy

$$
\mathrm{F}=\mathrm{K}_{\mathrm{E}} \cdot \frac{\mathrm{q}_{1} \cdot \mathrm{q}_{2}}{\mathrm{r}^{2}}
$$

$$
E=\frac{F}{q}
$$

Applications of electrostatics

Electromagnetic Forces and Induction

$$
E=\frac{K \cdot q}{d^{2}}
$$

Faraday's Law
Lenz's Law

Circular Motion and Gravitation

Uniform Circular Motion $v=\frac{2 \cdot \pi \cdot r}{t}$ Kinematics $a=\frac{v^{2}}{r}$ Dynamics $F_{\text {net }}=m \cdot \frac{v^{2}}{r}$ Gravitational field strength $F=\frac{G \cdot m_{1} \cdot m_{2}}{r^{2}}$ $G=\frac{F}{m}$	

