Physics 12

Kinematics (2D)

Vector analysis Relative motion Accelerated motion Projectile motion Relationships between variables

$$d = v_i \cdot t + \frac{1}{2} a \cdot t^2$$

$$v_f = v_i + a \cdot t$$

$$V_f^2 = V_i^2 + 2 \cdot a \cdot d$$

$$d = \frac{v_i + v_f}{2} \cdot t$$

Dynamics (2D)

Application of Newton's Laws	$F = \underline{G} \cdot \underline{m}_1 \cdot \underline{m}_2$
Inertial vs gravitational mass	r^2 F = k · x
Apparent weight	$F_{\rm N} = m \cdot q$
Net force	
Acceleration of a system	r – 111 ° d
	$F = \mu \cdot F_N$

Choose one of the two <u>electric</u> modules below:

Electrostatics

- Electric charge
- Electric force
- Electric field
- Electric potential energy
- Applications of electrostatics

Electromagnetic Forces and Induction

Properties of magnetism Electromagnetic force and field Electromagnetic induction

$$F = K_{E} \cdot \frac{q_{1} \cdot q_{2}}{r^{2}}$$
$$E = \frac{F}{q}$$
$$E = \frac{K \cdot q}{d^{2}}$$

Faraday's Law

Lenz's Law

Choose one of the two force modules below:

Equilibrium

Translational Equilibrium

Torque = $F \cdot r \cdot sin(theta)$

m

Rotational Equilibrium

Torque

Lever, fulcrum, lever arm

Centre of gravity

Static Equilibrium

Circular Motion and Gravitation

Uniform Circular Motion	$v = 2 \cdot \pi \cdot r$
Kinematics	t
Dynamics	$a = \frac{v^2}{r}$
Universal Gravitation Law	I
Gravitational field strength	$F_{net} = m \cdot \frac{v^2}{r}$
	$F = \frac{G \cdot m_1 \cdot m_2}{r^2}$
	G = <u>F</u>